Measuring the growth of matter fluctuations with third order galaxy correlations

Hoffmann, Bel, Gaztañaga

cosmology with large scale structure

matter fluctuations:

$$\delta_R = (\rho_R - \overline{\rho})/\overline{\rho}$$

linear growth (R > 40 Mpc/h):

$$D(z) \simeq \delta_m(z)/\delta_m(0)$$

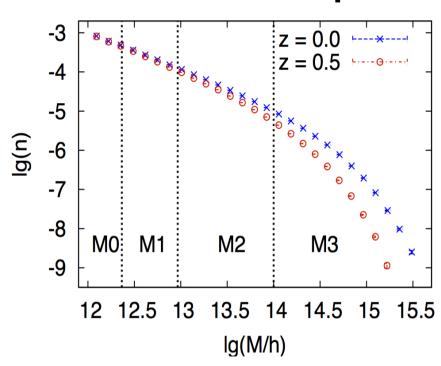
growth depends on cosmology

$$D(a) \propto \frac{H(t)}{H(0)} \int_{0}^{a} \frac{da'}{\left[\Omega_{m}/a' + \Omega_{\Lambda}a' - (\Omega_{m} + \Omega_{\Lambda} - 1)\right]^{3/2}} \qquad a = \frac{1}{1+z}$$

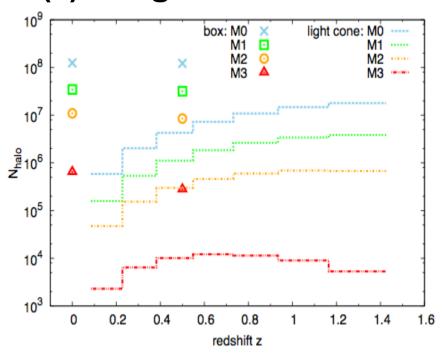
MICE Grand Challenge simulation

3072 Mpc/h box, 4096³ particles, mp=2.9 10¹⁰ Msun/h halos are FoF-groups

halo mass samples:



$N_h(z)$ in light cone and box:



ΛCDM cosmology:

$$\Omega_m = \Omega_{DM} + \Omega_b = 0.25$$
, $\Omega_{\Lambda} = 0.75$, $\Omega_b = 0.044$, $\sigma_8(z=0) = 0.8$, $n_s = 0.95$, $h = 0.7$

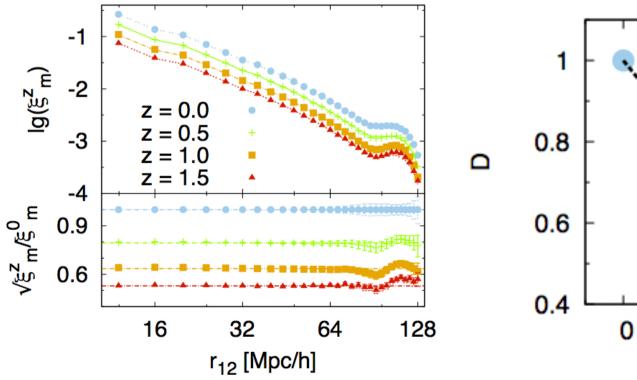
measuring growth with two-point correlations

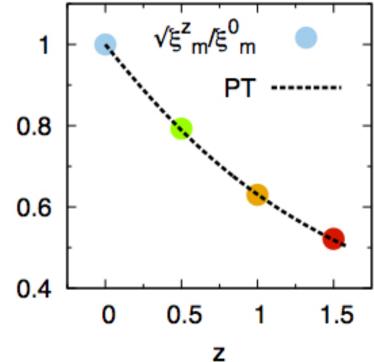
two point correlation:

$$\xi(r_{12}) \equiv \langle \delta_1 \delta_2 \rangle(r_{12})$$

large scale growth:

$$\xi_m(z) = D^2(z)\xi_m(0)$$





galaxy bias

quadratic model for local bias:

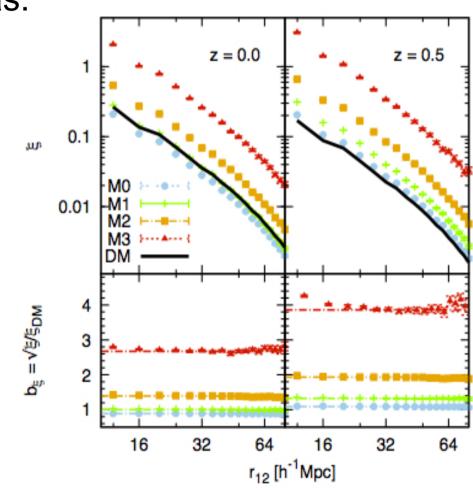
$$\delta_g \simeq b_1 \delta_m + (b_2/2)(\delta_m^2 - \langle \delta_m^2 \rangle)$$

large scales: $\xi_g \simeq b_{\xi}^2 \xi_m$

degeneracy with growth:

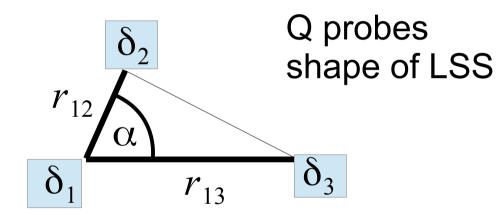
$$D(z) = \sqrt{\frac{\xi_m(z)}{\xi_m(0)}} = \frac{b(0)}{b(z)} \sqrt{\frac{\xi_g(z)}{\xi_g(0)}}$$

can be broken with third order correlations



three-point correlation

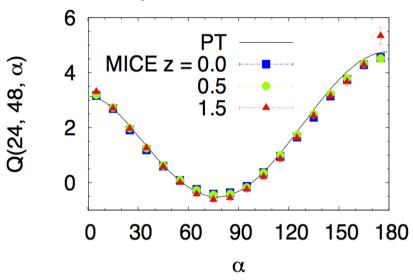
$$Q \equiv \frac{\langle \delta_1 \delta_2 \delta_3 \rangle (r_{12}, r_{13}, \alpha)}{\langle \delta_1 \delta_2 \rangle \langle \delta_1 \delta_3 \rangle + 2 perm.}$$



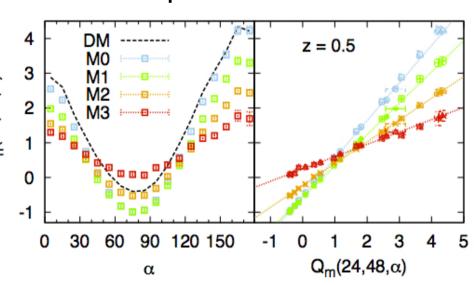
bias: $Q_g \simeq \frac{1}{b_Q} (Q_m + c_Q)$

independent of growth

Q independent of redshift



Q dependent on bias

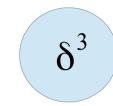


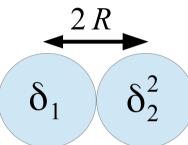
third-order moments

skewness:

$$S_3 \equiv \frac{\langle \delta^3 \rangle}{\langle \delta^2 \rangle^2}$$

cumulants: $C_{12} \equiv \frac{\langle \delta_1 \delta_2^2 \rangle}{\langle \delta_1 \delta_2 \rangle \langle \delta^2 \rangle}$



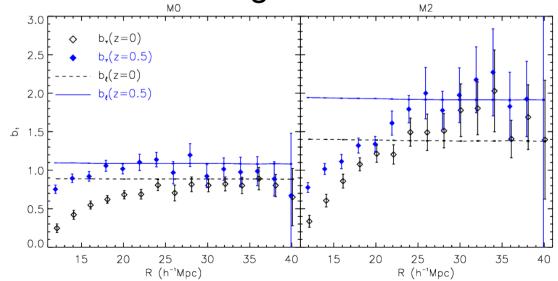


linear bias:

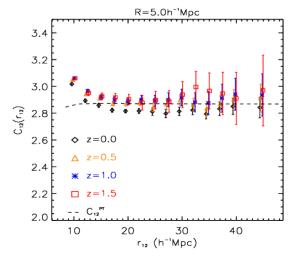
$$b_{\tau} = \frac{3 C_{12}^m - 2 S_3^m}{3 C_{12}^g - 2 S_3^g}$$

Bel & Marinoni, 2012, MNRAS, 424, 971

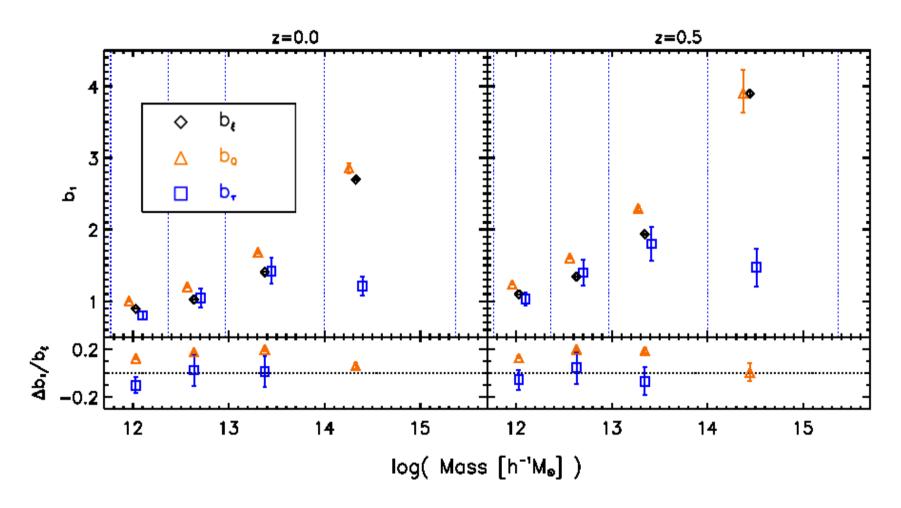
measuring linear bias



C12 independent of redshift



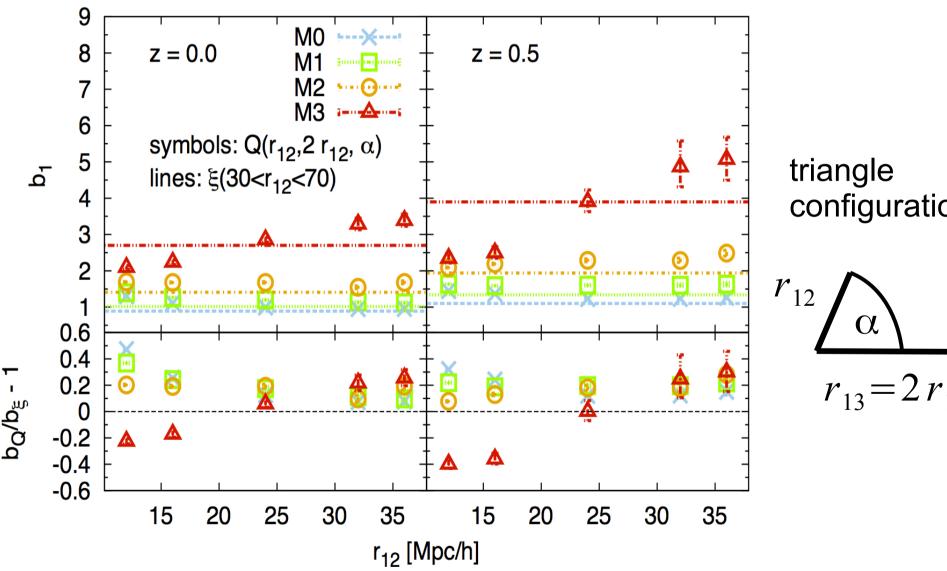
comparing bias from ξ , Q, C₁₂



Differences can be caused by

- large scale approximations
- higher order terms in bias function
- shot noise
- non-local bias (Chan et al., 2012)

comparing bias from ξ & Q at different triangle scales (r₁₂)

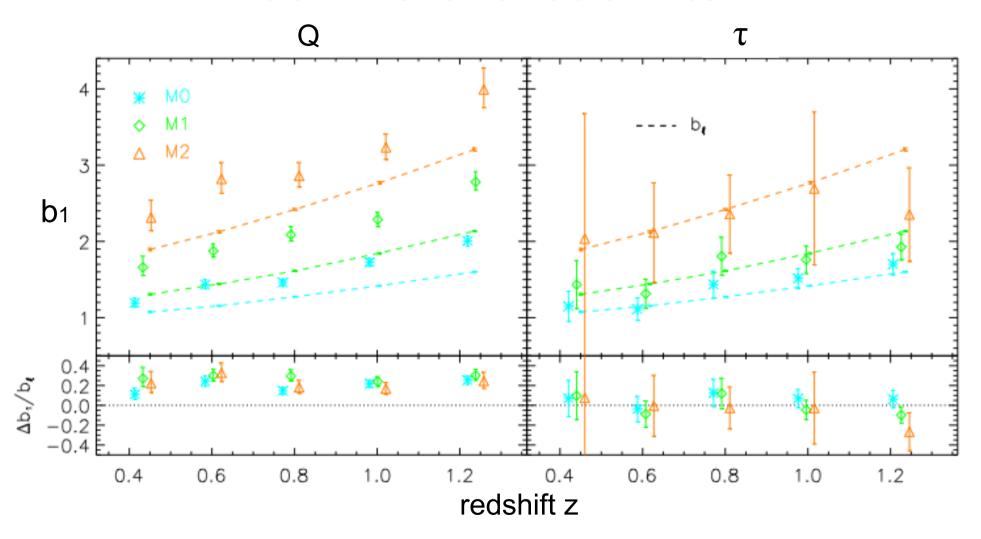


configuration:

$$r_{12} \sqrt{\alpha}$$

$$r_{13} = 2 r_{12}$$

comparing bias from ξ , Q & τ at different redshifts



problem: bias measurements from Q & τ depend on dark matter models

measuring growth without dark matter

$$D(z) = \frac{b(0)}{b(z)} \sqrt{\frac{\xi_g(z)}{\xi_g(0)}} \qquad \hat{b} = \frac{b(z)}{b(0)}$$

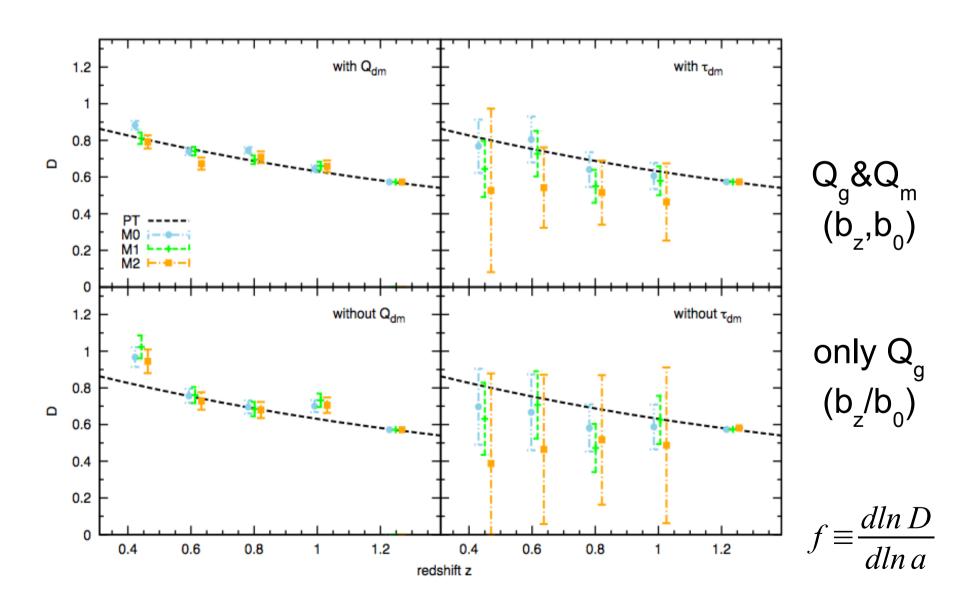
$$\hat{b} \equiv \frac{b(z)}{b(0)}$$

only bias ratio needs to be known for measuring D(z)

$$\left. \begin{array}{c} Q_{m}(z) = Q_{m}(0) \\ Q_{g}(z) \simeq \frac{1}{b_{Q}(z)} (Q_{m} + c_{Q}(z)) \end{array} \right\} \quad Q_{g}(z) \simeq \frac{1}{\hat{b}_{Q}} (Q_{g}(0) + \hat{c}_{Q}(0))$$

=> bias ratio can be measured using only Q => D(z) can be measured without assumptions on Q

growth measured in MICE light cone using galaxy bias from Q



growth rate measurements

$$f \equiv \frac{d\ln D}{d\ln a} \simeq \frac{a}{\Delta a} \frac{\Delta D}{D} = \Omega^{\gamma} \qquad a = \frac{1}{1+z}$$

$$\frac{\Delta D}{D} = \frac{1}{2} (\hat{D}_{i+1,i} - \hat{D}_{i-1,i})$$

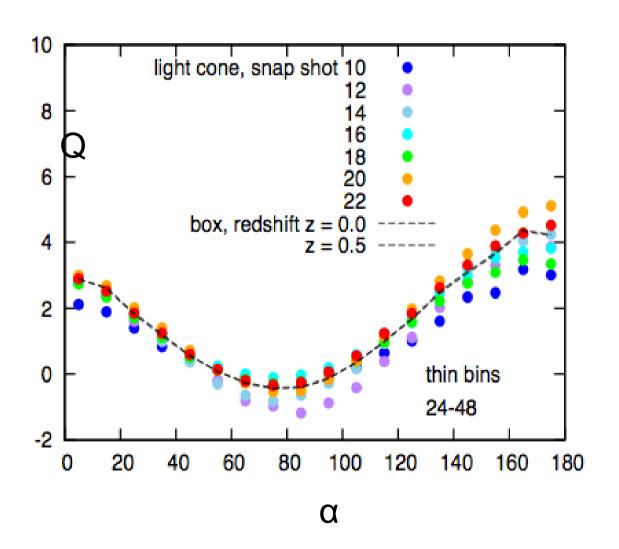
$$\hat{D}_{i,j} = \frac{D_i}{D_j} = \hat{b}_{i,j} \sqrt{\frac{\xi_i^g}{\xi_j^g}} \qquad \hat{b} = \frac{b(z)}{b(0)}$$

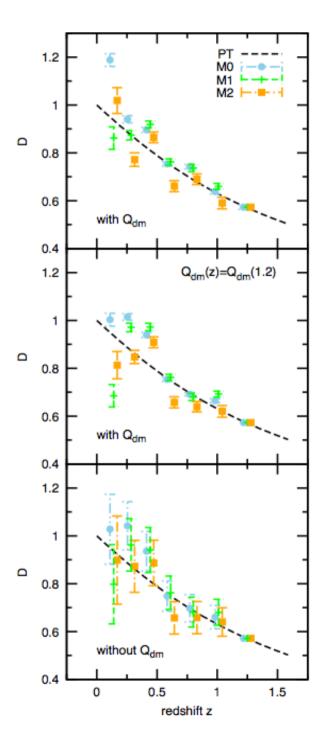
Summary

- growth-bias degeneracy broken with 3rd order correlations:
 - i) three-point correlations (Q)
 - ii) combining two- and one point statistic (S₃&C₁₂)
- 3rd order methods give good qualitative measurement of bias from ξ, but in detail they seem systematically away
- growth measurement using 3^{rd} order bias agrees qualitatively with growth from ξ_m and PT
- combining 3rd order correlations at different redshifts allows growth measurement without assumption on dm correlation

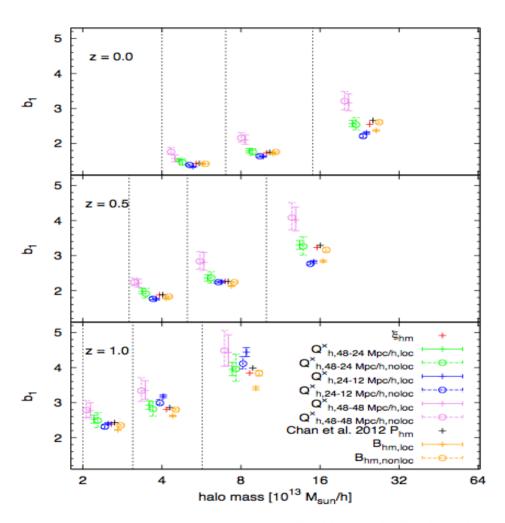
thanks!

effect of sampling variance on Q

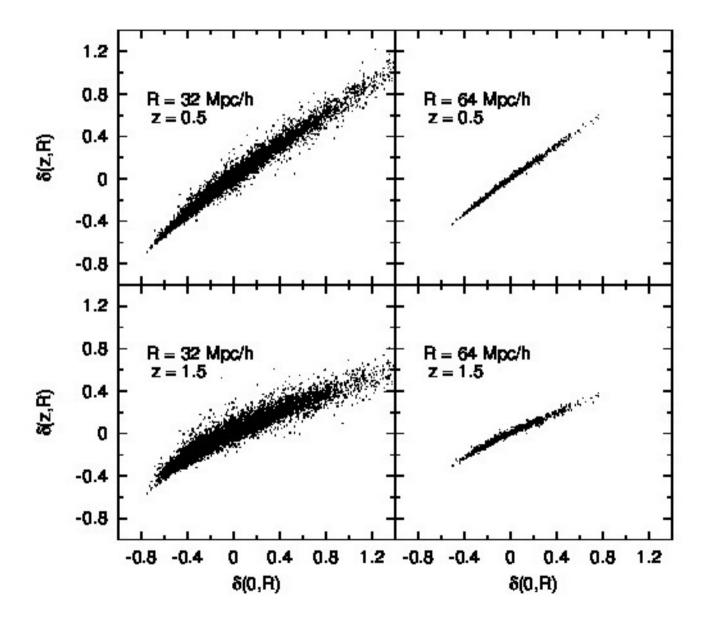




linear bias fitted with non-local contribution



Data We use the same set of 50 ΛCDM N-body simulations as Chan et al. (2012) with $\Omega_{\rm m}=0.27, \Omega_{\Lambda}=0.73, \ \Omega_{\rm b}=0.046, \ h=0.72, \sigma_{\rm g}=0.7, \ n_{\rm s}=1, \ N_{\rm part}=640^3, \ L_{\rm box}=1200$ Mpc/h.



Baugh, Gaztanaga & Efstathiou 1995

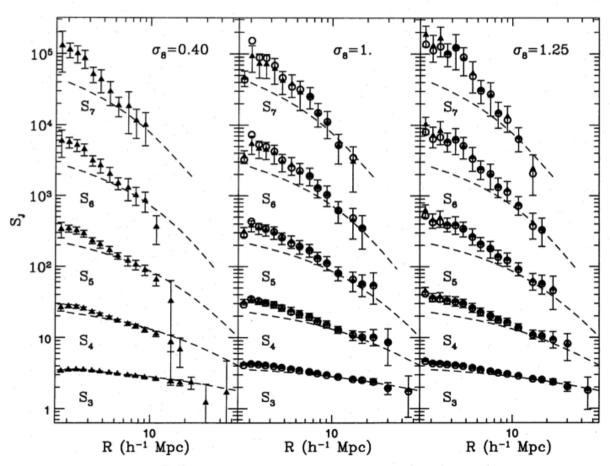


Figure 14. The hierarchical amplitudes $S_J = \overline{\xi}_J/\overline{\xi}_2^{J-1}$ in the $L_B = 180 \ h^{-1}$ Mpc, $N = 64^3$ simulations for different output times: $\sigma_8 = 0.40, 1.0, 1.25$. The dashed line shows the PT approximation. Triangles correspond to the values averaged over 10 different realizations of the initial displacements from a grid (the error bars are the dispersion around the mean). Circles correspond to the average over 10 different realizations of the displacements from a glass.